Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Cell Mol Neurobiol ; 42(2): 311-313, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34652580

RESUMO

This special Issue presents comprehensive and state-of-the-art advances in supporting the crucial role of the bidirectional interactions between the Brain-Gut Axis in health and diseases with an emphasis on the microbiome-gut-brain axis and its implications in variety of neurological disorders. There are intimate connections between the brain and the digestive system. Gut microbiota dysbiosis activates the intestinal immune system, enhances intestinal permeability and bacterial translocation, leading to neuroinflammation, epigenetic changes, cerebrovascular alterations, amyloid ß formation and α-synuclein protein aggregates. These alterations may participate in the development of hypertension, Alzheimer, Parkinson, stroke, epilepsy and autism. Brainstem nuclei such as the nucleus tractus solitarius (NTS) and the dorsal motor nucleus of the vagus (DMV) regulate gastric motor function by way of bidirectional inputs through the vagus nerve.


Assuntos
Eixo Encéfalo-Intestino , Microbioma Gastrointestinal , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Disbiose , Microbioma Gastrointestinal/fisiologia , Humanos , Núcleo Solitário/metabolismo
2.
Physiology (Bethesda) ; 36(3): 160-173, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33904788

RESUMO

Beyond blood pressure control, angiotensin receptor blockers reduce common injury mechanisms, decreasing excessive inflammation and protecting endothelial and mitochondrial function, insulin sensitivity, the coagulation cascade, immune responses, cerebrovascular flow, and cognition, properties useful to treat inflammatory, age-related, neurodegenerative, and metabolic disorders of many organs including brain and lung.


Assuntos
Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Sistema Renina-Angiotensina/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Antagonistas de Receptores de Angiotensina/efeitos adversos , Inibidores da Enzima Conversora de Angiotensina/efeitos adversos , Animais , Anti-Inflamatórios/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Antivirais/efeitos adversos , COVID-19/metabolismo , COVID-19/fisiopatologia , COVID-19/virologia , Fibrinolíticos/uso terapêutico , Humanos , SARS-CoV-2/patogenicidade
3.
Biomed Pharmacother ; 131: 110653, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32942152

RESUMO

BACKGROUND: Angiotensin receptor blockers (ARBs) reducing inflammation and protecting lung and brain function, could be of therapeutic efficacy in COVID-19 patients. METHODS: Using GSEA, we compared our previous transcriptome analysis of neurons injured by glutamate and treated with the ARB Candesartan (GSE67036) with transcriptional signatures from SARS-CoV-2 infected primary human bronchial epithelial cells (NHBE) and lung postmortem (GSE147507), PBMC and BALF samples (CRA002390) from COVID-19 patients. RESULTS: Hundreds of genes upregulated in SARS-CoV-2/COVID-19 transcriptomes were similarly upregulated by glutamate and normalized by Candesartan. Gene Ontology analysis revealed expression profiles with greatest significance and enrichment, including proinflammatory cytokine and chemokine activity, the NF-kappa B complex, alterations in innate and adaptive immunity, with many genes participating in the COVID-19 cytokine storm. CONCLUSIONS: There are similar injury mechanisms in SARS-CoV-2 infection and neuronal injury, equally reduced by ARB treatment. This supports the hypothesis of a therapeutic role for ARBs, ameliorating the COVID-19 cytokine storm.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Benzimidazóis/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Síndrome da Liberação de Citocina/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Tetrazóis/farmacologia , Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , Compostos de Bifenilo , Brônquios/citologia , Líquido da Lavagem Broncoalveolar/virologia , COVID-19 , Infecções por Coronavirus/complicações , Infecções por Coronavirus/virologia , Síndrome da Liberação de Citocina/virologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Perfilação da Expressão Gênica , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/virologia , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/virologia , SARS-CoV-2 , Transcriptoma , Tratamento Farmacológico da COVID-19
6.
Pharmacol Res ; 156: 104832, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32304747

RESUMO

Angiotensin Receptor Blockers (ARBs) exhibit major pleiotropic protecting effects beyond their antihypertensive properties, including reduction of inflammation. ARBs directly protect the lung from the severe acute respiratory syndrome as a result of viral infections, including those from coronavirus. The protective effect of ACE2 is enhanced by ARB administration. For these reasons ARB therapy must be continued for patients affected by hypertension, diabetes and renal disease, comorbidities of the current COVID-19 pandemic. Controlled clinical studies should be conducted to determine whether ARBs may be included as additional therapy for COVID-19 patients.


Assuntos
Diabetes Mellitus , Hipertensão , Antagonistas de Receptores de Angiotensina , Betacoronavirus , COVID-19 , Infecções por Coronavirus , Humanos , Pandemias , Peptidil Dipeptidase A , Pneumonia Viral , SARS-CoV-2
7.
Cell Mol Neurobiol ; 40(2): 189-190, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32006222

RESUMO

Trace amines, including ß-phenylethylamine, p-octopamine, p-tyramine, and tryptamine, are produced in high levels in invertebrates where they play major roles in homeostasis regulation in a manner similar to that of adrenergic systems in mammals (Rutigliano et al. in Front Pharmacol 8:987, 2017; Gainetdinov et al. in Pharmacol Rev 70(3):549-620, 2018; Nagaya et al. in Neurosci Lett 329(3):324-328, 2002). In mammals, however, their levels are very low, initially prompting these molecules to be termed "trace" or "minor" amines in mammals with only a secondary role in the regulation of more abundant biogenic amines including catecholamines and serotonin (Gainetdinov et al. in Pharmacol Rev 70(3):549-620, 2018). The more recent discovery of trace amine-associated receptors (TAARs) revealed major, previously unsuspected roles of the trace amines and has led to increasing interest within the scientific community. For example, TAARs have been proposed to modulate signaling through dopamine (Schwartz et al. in Expert Opin Ther Targets 22(6):513-526, 2018). Furthermore, these receptors are implicated in both numerous physiological functions including regulation of sleep, olfaction, metabolism, and immunity as well in disease (e.g., substance abuse, neuropsychiatric disorders) (Gainetdinov et al. in Pharmacol Rev 70(3):549-620, 2018; Rutigliano et al. in Front Pharmacol 8:987, 2017). Consequently, trace amine and TAAR research is rapidly growing and is of great translational relevance. In this Special Issue, leaders in trace amine and TAAR research offer both reviews and original research papers that cover a wide range of topics from involvement of TAAR signaling in metabolic regulation and neurophysiology to implications of this signaling in neuropsychiatric diseases including substance abuse and schizophrenia. While a diverse range of topics is covered by these works, the common theme running through all of them is the increasing awareness that trace amine and TAAR signaling represent novel signaling mechanisms in the brain and periphery. These topics are both highly timely and of considerable importance not only for those working in the field but also for the neuroscience community at large.


Assuntos
Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais/fisiologia , Animais , Humanos
9.
Mol Neurobiol ; 57(3): 1656-1673, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31811565

RESUMO

Preclinical experiments and clinical trials demonstrated that angiotensin II AT1 receptor overactivity associates with aging and cellular senescence and that AT1 receptor blockers (ARBs) protect from age-related brain disorders. In a primary neuronal culture submitted to glutamate excitotoxicity, gene set enrichment analysis (GSEA) revealed expression of several hundred genes altered by glutamate and normalized by candesartan correlated with changes in expression in Alzheimer's patient's hippocampus. To further establish whether our data correlated with gene expression alterations associated with aging and senescence, we compared our global transcriptional data with additional published datasets, including alterations in gene expression in the neocortex and cerebellum of old mice, human frontal cortex after age of 40, gene alterations in the Werner syndrome, rodent caloric restriction, Ras and oncogene-induced senescence in fibroblasts, and to tissues besides the brain such as the muscle and kidney. The most significant and enriched pathways associated with aging and senescence were positively correlated with alterations in gene expression in glutamate-injured neurons and, conversely, negatively correlated when the injured neurons were treated with candesartan. Our results involve multiple genes and pathways, including CAV1, CCND1, CDKN1A, CHEK1, ICAM1, IL-1B, IL-6, MAPK14, PTGS2, SERPINE1, and TP53, encoding proteins associated with aging and senescence hallmarks, such as inflammation, oxidative stress, cell cycle and mitochondrial function alterations, insulin resistance, genomic instability including telomere shortening and DNA damage, and the senescent-associated secretory phenotype. Our results demonstrate that AT1 receptor blockade ameliorates central mechanisms of aging and senescence. Using ARBs for prevention and treatment of age-related disorders has important translational value.


Assuntos
Envelhecimento/metabolismo , Benzimidazóis/farmacologia , Neurônios/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Tetrazóis/farmacologia , Transcriptoma/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Animais , Compostos de Bifenilo , Senescência Celular/genética , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Neurônios/metabolismo , Neuroproteção/genética , Estresse Oxidativo/genética , Ratos , Transcriptoma/genética
10.
Cell Mol Neurobiol ; 39(2): 265-286, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30607811

RESUMO

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA contributing to protect the blood-brain barrier (BBB) after stroke. We searched for small molecules that may up-regulate MALAT1 and focused on polydatin (PD), a natural product, as a possible candidate. PD enhanced MALAT1 gene expression in rat brain microvascular endothelial cells, reducing cell toxicity and apoptosis after oxygen and glucose deprivation (OGD). These effects correlated with reduction of inflammatory factors and enhancement of expression of BBB markers. We found opposite changes after MALAT1 silencing. We determined that C/EBPß is a key transcription factor for PD-mediated MALAT1 expression. PPARγ activity is involved in MALAT1 protective effects through its coactivator PGC-1α and the transcription factor CREB. This suggests that PD activates the MALAT1/CREB/PGC-1α/PPARγ signaling pathway to protect endothelial cells against ischemia. PD administration to rats subjected to brain ischemia by transient middle cerebral artery occlusion (tMCAO) reduced cerebral infarct volume and brain inflammation, protected cerebrovascular endothelial cells and BBB integrity. These effects correlated with increased expression of MALAT1, C/EBPß, and PGC-1α. Our results strongly suggest that the beneficial effects of PD involve the C/EBPß/MALAT1/CREB/PGC-1α/PPARγ pathway, which may provide a novel therapeutic strategy for brain ischemic stroke.


Assuntos
Encéfalo/irrigação sanguínea , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Glucosídeos/uso terapêutico , Microvasos/metabolismo , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Longo não Codificante/genética , Estilbenos/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Sequência de Bases , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Glucosídeos/química , Glucosídeos/farmacologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Modelos Biológicos , RNA Longo não Codificante/metabolismo , Ratos Sprague-Dawley , Estilbenos/química , Estilbenos/farmacologia , Fatores de Tempo
11.
Mol Neurobiol ; 56(5): 3193-3210, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30105672

RESUMO

The Angiotensin II Receptor Blocker (ARB) Telmisartan reduces inflammation through Angiotensin II AT1 receptor blockade and peroxisome proliferator-activated receptor gamma (PPARγ) activation. However, in a mouse microglia-like BV2 cell line, imitating primary microglia responses with high fidelity and devoid of AT1 receptor gene expression or PPARγ activation, Telmisartan reduced gene expression of pro-injury factors, enhanced that of anti-inflammatory genes, and prevented LPS-induced increase in inflammatory markers. Using global gene expression profiling and pathways analysis, we revealed that Telmisartan normalized the expression of hundreds of genes upregulated by LPS and linked with inflammation, apoptosis and neurodegenerative disorders, while downregulating the expression of genes associated with oncological, neurodegenerative and viral diseases. The PPARγ full agonist Pioglitazone had no neuroprotective effects. Surprisingly, the PPARγ antagonists GW9662 and T0070907 were neuroprotective and enhanced Telmisartan effects. GW9226 alone significantly reduced LPS toxic effects and enhanced Telmisartan neuroprotection, including downregulation of pro-inflammatory TLR2 gene expression. Telmisartan and GW9662 effects on LPS injury negatively correlated with pro-inflammatory factors and upstream regulators, including TLR2, and positively with known neuroprotective factors and upstream regulators. Gene Set Enrichment Analysis (GSEA) of the Telmisartan and GW9662 data revealed negative correlations with sets of genes associated with neurodegenerative and metabolic disorders and toxic treatments in cultured systems, while demonstrating positive correlations with gene sets associated with neuroprotection and kinase inhibition. Our results strongly suggest that novel neuroprotective effects of Telmisartan and GW9662, beyond AT1 receptor blockade or PPARγ activation, include downregulation of the TLR2 signaling pathway, findings that may have translational relevance.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Microglia/patologia , Fármacos Neuroprotetores/farmacologia , PPAR gama/metabolismo , Telmisartan/farmacologia , Anilidas/farmacologia , Animais , Encefalopatias/genética , Encefalopatias/patologia , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , PPAR gama/antagonistas & inibidores , PPAR gama/genética , Pioglitazona/farmacologia , Telmisartan/administração & dosagem , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
12.
Biotechnol J ; 13(8): e1700669, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29577665

RESUMO

Detailed molecular mechanisms underpinning enzymatic reactions are still a central problem in biochemistry. The need for active site flexibility to sustain catalytic activity constitutes a notion of wide acceptance, although its direct influence remains to be fully understood. With the aim of studying the relationship between structural dynamics and enzyme catalysis, the cellulase Cel5A from Bacillus agaradherans is used as a model for in silico comparative analysis with mesophilic and psychrophilic counterparts. Structural features that determine flexibility are related to kinetic and thermodynamic parameters of catalysis. As a result, three specific positions in the vicinity of the active site of Cel5A are selected for protein engineering via site-directed mutagenesis. Three Cel5A variants are generated, N141L, A137Y and I102A/A137Y, showing a concomitant increase in the catalytic activity at low temperatures and a decrease in activation energy and activation enthalpy, similar to cold-active enzymes. These results are interpreted in structural terms by molecular dynamics simulations, showing that disrupting a hydrogen bond network in the vicinity of the active site increases local flexibility. These results provide a structural framework for explaining the changes in thermodynamic parameters observed between homologous enzymes with varying temperature adaptations.


Assuntos
Bacillus/enzimologia , Domínio Catalítico/genética , Celulase , Mutagênese Sítio-Dirigida/métodos , Bacillus/genética , Celulase/química , Celulase/genética , Celulase/metabolismo , Celulase/fisiologia , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Termodinâmica
13.
Antioxid Redox Signal ; 28(2): 141-163, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-28747068

RESUMO

AIMS: Microglia-mediated neuroinflammation plays an important role in focal ischemic stroke, a disorder with no effective therapeutic agents. Since microglial polarization to the M2 phenotype and reduction of oxidative stress are mediated through AMP-activated protein kinase (AMPK) and nuclear factor erythroid 2-related factor 2 (Nrf2) activation, we assessed the dual therapeutic effect of AMPK and Nrf2 activation by a novel neuroprotectant HP-1c in the treatment of ischemic stroke. RESULTS: We developed a novel class of hybrids (HP-1a-HP-1f) of telmisartan and 2-(1-hydroxypentyl)-benzoate (HPBA) as a ring-opening derivative of NBP. The most promising hybrid, HP-1c, exhibited more potent anti-inflammatory and neuroprotective effects in vitro and reduced brain infarct volume and improved neurological deficits in a rat model of transient focal cerebral ischemia when compared with telmisartan alone, NBP alone, or a combination of telmisartan and NBP. HP-1c had a therapeutic window of up to 24 h, ameliorated ischemic cerebral injury in permanent focal cerebral ischemia, and improved motor function. The beneficial effects of HP-1c in ischemic stroke were associated with microglial polarization to the M2 phenotype and reduced oxidative stress. HP-1c also shifted the M1/M2 polarization in a mouse neuroinflammatory model. The anti-inflammatory and anti-oxidative effects of HP-1c were associated with AMPK-Nrf2 pathway activation for neuroprotection. We showed that HP-1c penetrates the brain, has a plasma half-life of around 3.93 h, and has no toxicity in mice. Innovation and Conclusion: Our study results suggest that HP-1c, with dual AMPK- and Nrf2-activating properties, may have potential in further studies as a novel therapy for ischemic stroke. Antioxid. Redox Signal. 28, 141-163.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Encefalite/etiologia , Encefalite/metabolismo , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/agonistas , Fator 2 Relacionado a NF-E2/metabolismo , Acidente Vascular Cerebral/complicações , Animais , Antioxidantes , Isquemia Encefálica , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Infarto Cerebral , Modelos Animais de Doenças , Encefalite/imunologia , Feminino , Ativação de Macrófagos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Microglia/imunologia , Microglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , PPAR gama/metabolismo , Ratos , alfa-Defensinas/química , alfa-Defensinas/farmacologia
14.
Cell Mol Neurobiol ; 38(1): 53-71, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28534246

RESUMO

Microglia, of myeloid origin, play fundamental roles in the control of immune responses and the maintenance of central nervous system homeostasis. These cells, just like peripheral macrophages, may be activated into M1 pro-inflammatory or M2 anti-inflammatory phenotypes by appropriate stimuli. Microglia do not respond in isolation, but form part of complex networks of cells influencing each other. This review addresses the complex interaction of microglia with each cell type in the brain: neurons, astrocytes, cerebrovascular endothelial cells, and oligodendrocytes. We also highlight the participation of microglia in the maintenance of homeostasis in the brain, and their roles in the development and progression of age-related neurodegenerative disorders.


Assuntos
Encéfalo/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Animais , Encéfalo/patologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Homeostase/fisiologia , Humanos , Microglia/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/patologia
15.
Brain Behav Immun ; 67: 101-117, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28803158

RESUMO

Neuroinflammation plays a vital role in the pathological process of cerebral ischemic stroke, but currently there is no effective treatment. After ischemia, microglia-produced proinflammatory mediator expression contributes to the aggravation of neuroinflammation, while anti-inflammatory activation of microglia develops an anti-neuroinflammatory effect via secretion of anti-inflammatory factor. Promoting the anti-inflammatory activation of microglia might be an effective treatment of stroke. Previously, we discovered one derivative of the natural product (+)-balasubramide, compound 3C, that exhibits a remarkably anti-neuroinflammatory effect in vitro with unknown mechanisms. Thus in this study, we aimed to clarify its molecular mechanisms and determine whether compound 3C has a neuroprotective effect after ischemia via regulation on microglial inflammation. We found that compound 3C promoted the anti-inflammatory mediator expression and reduced the proinflammatory mediator expression in LPS-stimulated BV2 cells and mouse primary microglia cells, which were reversed by AMP-activated protein kinase (AMPK) inhibition or AMPK upstream calmodulin-dependent protein kinase kinase beta (CaMKKß) inhibition. Compound 3C also prevented LPS-stimulated JNK activation and enhanced PGC-1α activation in microglia, which was attenuated by AMPK inhibition. Additionally, compound 3C ameliorated depressive behaviors in LPS-induced neuroinflammatory mice by promoting the anti-inflammatory activation of microglia. Furthermore, we found that compound 3C markedly reduced brain infarct volume, improved the neurological deficit in rats with ischemia and reduced the activated microglia/macrophage cells in the ischemic area, which concomitantly enhanced the anti-inflammatory mediator expression. A mechanistic study showed that the compound 3C-mediated activation of CaMKKß, AMPK and PGC-1α is involved in the anti-neuroinflammatory and neuroprotective effects of 3C in the brain of LPS-treated mice and ischemic rats. Taken together, our results show that compound 3C could suppress neuroinflammation in vitro and in vivo by modulating microglial activation state through the CaMKKß-dependent AMPK/PGC-1α signaling pathway, and maybe further be developed as a promising new drug candidate for the treatment of brain disorders such as stroke associated with brain inflammation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Encefalite/metabolismo , Compostos Heterocíclicos com 3 Anéis/química , Microglia/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular , Depressão , Encefalite/prevenção & controle , Infarto da Artéria Cerebral Média/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley , Transdução de Sinais
16.
Artigo em Inglês | MEDLINE | ID: mdl-28955302

RESUMO

Traumatic brain injury (TBI) causes transient increases and subsequent decreases in brain glucose utilization. The underlying molecular pathways are orchestrated processes and poorly understood. In the current study, we determined temporal changes in cortical and hippocampal expression of genes important for brain glucose/lactate metabolism and the effect of a known neuroprotective drug telmisartan on the expression of these genes after experimental TBI. Adult male C57BL/6J mice (n = 6/group) underwent sham or unilateral controlled cortical impact (CCI) injury. Their ipsilateral and contralateral cortex and hippocampus were collected 6 h, 1, 3, 7, 14, 21, and 28 days after injury. Expressions of several genes important for brain glucose utilization were determined by qRT-PCR. In results, (1) mRNA levels of three key enzymes in glucose metabolism [hexo kinase (HK) 1, pyruvate kinase, and pyruvate dehydrogenase (PDH)] were all increased 6 h after injury in the contralateral cortex, followed by decreases at subsequent times in the ipsilateral cortex and hippocampus; (2) capillary glucose transporter Glut-1 mRNA increased, while neuronal glucose transporter Glut-3 mRNA decreased, at various times in the ipsilateral cortex and hippocampus; (3) astrocyte lactate transporter MCT-1 mRNA increased, whereas neuronal lactate transporter MCT-2 mRNA decreased in the ipsilateral cortex and hippocampus; (4) HK2 (an isoform of hexokinase) expression increased at all time points in the ipsilateral cortex and hippocampus. GPR81 (lactate receptor) mRNA increased at various time points in the ipsilateral cortex and hippocampus. These temporal alterations in gene expression corresponded closely to the patterns of impaired brain glucose utilization reported in both TBI patients and experimental TBI rodents. The observed changes in hippocampal gene expression were delayed and prolonged, when compared with those in the cortex. The patterns of alterations were specific to different brain regions and exhibited different recovery periods following TBI. Oral administration of telmisartan (1 mg/kg, for 7 days, n = 10 per group) ameliorated cortical or hippocampal mRNA for Glut-1/3, MCT-1/2 and PDH in CCI mice. These data provide molecular evidence for dynamic alteration of multiple critical factors in brain glucose metabolism post-TBI and can inform further research for treating brain metabolic disorders post-TBI.

17.
Artigo em Inglês | MEDLINE | ID: mdl-28861397

RESUMO

The Human Respiratory Syncytial Virus (hRSV) is a major cause of acute lower respiratory tract infections (ARTIs) and high rates of hospitalizations in children and in the elderly worldwide. Symptoms of hRSV infection include bronchiolitis and pneumonia. The lung pathology observed during hRSV infection is due in part to an exacerbated host immune response, characterized by immune cell infiltration to the lungs. HRSV is an enveloped virus, a member of the Pneumoviridae family, with a non-segmented genome and negative polarity-single RNA that contains 10 genes encoding for 11 proteins. These include the Fusion protein (F), the Glycoprotein (G), and the Small Hydrophobic (SH) protein, which are located on the virus surface. In addition, the Nucleoprotein (N), Phosphoprotein (P) large polymerase protein (L) part of the RNA-dependent RNA polymerase complex, the M2-1 protein as a transcription elongation factor, the M2-2 protein as a regulator of viral transcription and (M) protein all of which locate inside the virion. Apart from the structural proteins, the hRSV genome encodes for the non-structural 1 and 2 proteins (NS1 and NS2). HRSV has developed different strategies to evade the host immunity by means of the function of some of these proteins that work as virulence factors to improve the infection in the lung tissue. Also, hRSV NS-1 and NS-2 proteins have been shown to inhibit the activation of the type I interferon response. Furthermore, the hRSV nucleoprotein has been shown to inhibit the immunological synapsis between the dendritic cells and T cells during infection, resulting in an inefficient T cell activation. Here, we discuss the hRSV virulence factors and the host immunological features raised during infection with this virus.


Assuntos
Imunidade Adaptativa , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais/imunologia , Fatores de Virulência/imunologia , Idoso , Criança , Células Dendríticas/imunologia , Genoma Viral , Glicoproteínas/genética , Humanos , Evasão da Resposta Imune , Sinapses Imunológicas/imunologia , Interferon Tipo I/metabolismo , Interferons/imunologia , Pulmão/patologia , Ativação Linfocitária , Nucleoproteínas/genética , Fosfoproteínas/genética , RNA Polimerase Dependente de RNA/genética , Infecções por Vírus Respiratório Sincicial/patologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/patogenicidade , Vírus Sincicial Respiratório Humano/fisiologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , Proteínas Oncogênicas de Retroviridae/genética , Linfócitos T/imunologia , Proteínas Virais de Fusão/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/fisiologia , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/fisiologia
18.
Cell Mol Neurobiol ; 36(2): 259-79, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26993513

RESUMO

Alzheimer's disease is the most frequent type of dementia and diagnosed late in the progression of the illness when irreversible brain tissue loss has already occurred. For this reason, treatments have been ineffective. It is imperative to find novel therapies ameliorating modifiable risk factors (hypertension, stroke, diabetes, chronic kidney disease, and traumatic brain injury) and effective against early pathogenic mechanisms including alterations in cerebral blood flow leading to poor oxygenation and decreased access to nutrients, impaired glucose metabolism, chronic inflammation, and glutamate excitotoxicity. Angiotensin II receptor blockers (ARBs) fulfill these requirements. ARBs are directly neuroprotective against early injury factors in neuronal, astrocyte, microglia, and cerebrovascular endothelial cell cultures. ARBs protect cerebral blood flow and reduce injury to the blood brain barrier and neurological and cognitive loss in animal models of brain ischemia, traumatic brain injury, and Alzheimer's disease. These compounds are clinically effective against major risk factors for Alzheimer's disease: hypertension, stroke, chronic kidney disease, diabetes and metabolic syndrome, and ameliorate age-dependent cognitive loss. Controlled studies on hypertensive patients, open trials, case reports, and database meta-analysis indicate significant therapeutic effects of ARBs in Alzheimer's disease. ARBs are safe compounds, widely used to treat cardiovascular and metabolic disorders in humans, and although they reduce hypertension, they do not affect blood pressure in normotensive individuals. Overall, there is sufficient evidence to consider long-term controlled clinical studies with ARBs in patients suffering from established risk factors, in patients with early cognitive loss, or in normal individuals when reliable biomarkers of Alzheimer's disease risk are identified.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antagonistas de Receptores de Angiotensina/uso terapêutico , Doença de Alzheimer/patologia , Doença de Alzheimer/prevenção & controle , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
19.
Alzheimers Res Ther ; 8: 5, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26822027

RESUMO

BACKGROUND: Alzheimer's disease is the most frequent age-related dementia, and is currently without treatment. To identify possible targets for early therapeutic intervention we focused on glutamate excitotoxicity, a major early pathogenic factor, and the effects of candesartan, an angiotensin receptor blocker of neuroprotective efficacy in cell cultures and rodent models of Alzheimer's disease. The overall goal of the study was to determine whether gene analysis of drug effects in a primary neuronal culture correlate with alterations in gene expression in Alzheimer's disease, thus providing further preclinical evidence of beneficial therapeutic effects. METHODS: Primary neuronal cultures were treated with candesartan at neuroprotective concentrations followed by excitotoxic glutamate amounts. We performed genome-wide expression profile analysis and data evaluation by ingenuity pathway analysis and gene set enrichment analysis, compared with alterations in gene expression from two independent published datasets identified by microarray analysis of postmortem hippocampus from Alzheimer's disease patients. Preferential expression in cerebrovascular endothelial cells or neurons was analyzed by comparison to published gene expression in these cells isolated from human cortex by laser capture microdissection. RESULTS: Candesartan prevented glutamate upregulation or downregulation of several hundred genes in our cultures. Ingenuity pathway analysis and gene set enrichment analysis revealed that inflammation, cardiovascular disease and diabetes signal transduction pathways and amyloid ß metabolism were major components of the neuronal response to glutamate excitotoxicity. Further analysis showed associations of glutamate-induced changes in the expression of several hundred genes, normalized by candesartan, with similar alterations observed in hippocampus from Alzheimer's disease patients. Gene analysis of neurons and cerebrovascular endothelial cells obtained by laser capture microdissection revealed that genes up- and downregulated by glutamate were preferentially expressed in endothelial cells and neurons, respectively. CONCLUSIONS: Our data may be interpreted as evidence of direct candesartan neuroprotection beyond its effects on blood pressure, revealing common and novel disease mechanisms that may underlie the in vitro gene alterations reported here and glutamate-induced cell injury in Alzheimer's disease. Our observations provide novel evidence for candesartan neuroprotection through early molecular mechanisms of injury in Alzheimer's disease, supporting testing this compound in controlled clinical studies in the early stages of the illness.


Assuntos
Doença de Alzheimer/genética , Benzimidazóis/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Tetrazóis/farmacologia , Transcriptoma/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Apoptose/efeitos dos fármacos , Compostos de Bifenilo , Células Cultivadas , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Bases de Dados Factuais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Ácido Glutâmico/toxicidade , Hipocampo/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
20.
Am J Pathol ; 185(10): 2641-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26435412

RESUMO

Traumatic brain injury affects the whole body in addition to the direct impact on the brain. The systemic response to trauma is associated with the hepatic acute-phase response. To further characterize this response, we performed controlled cortical impact injury on male mice and determined the expression of serum amyloid A1 (SAA1), an apolipoprotein, induced at the early stages of the acute-phase response in liver and plasma. After cortical impact injury, induction of SAA1 was detectable in plasma at 6 hours post-injury and in liver at 1 day post-injury, followed by gradual diminution over time. In the liver, cortical impact injury increased neutrophil and macrophage infiltration, apoptosis, and expression of mRNA encoding the chemokines CXCL1 and CXCL10. An increase in angiotensin II AT1 receptor mRNA at 3 days post-injury was also observed. Administration of the AT1 receptor antagonist telmisartan 1 hour post-injury significantly decreased liver SAA1 levels and CXCL10 mRNA expression, but did not affect CXCL1 expression or the number of apoptotic cells or infiltrating leukocytes. To our knowledge, this is the first study to demonstrate that SAA1 is induced in the liver after traumatic brain injury and that telmisartan prevents this response. Elucidating the molecular pathogenesis of the liver after brain injury will assist in understanding the efficacy of therapeutic approaches to brain injury.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Benzimidazóis/farmacologia , Benzoatos/farmacologia , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Fígado/efeitos dos fármacos , Proteína Amiloide A Sérica/metabolismo , Reação de Fase Aguda/metabolismo , Animais , Lesões Encefálicas/patologia , Quimiocina CXCL1/metabolismo , Quimiocina CXCL10/metabolismo , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Telmisartan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...